Additional File 2:

Simulation experiment demonstrating sensitivity of random forests to input parameters.

Using a uniform random number generator with range [-1, 1], a dataset with 100 variables and 1,000 samples was generated. The response variable was constructed as the sign of sum of variables #1-#10 (i.e., it is a linear decision function). The dataset was randomly split into a non-overlapping training and testing set with 500 samples each.

Linear SVM classifier was applied to this dataset with penalty parameter $C = \{0.1, 1, 10 100, 1000, 10000\}$. RF classifier was applied with parameters $mtry = \{1, 2, 5, 10, 20\}$ and $ntree = \{1, 10, 100, 1000, 10000\}$. The classification performance measured by AUC is provided in the tables below.

Performance of SVMs

C								
0.1	1	10	100	1000	10000			
0.970	0.973	0.970	0.970	0.970	0.970			

Performance of RFs

mtru	ntree					
mtry	1	10	100	1000	10000	
1	0.502	0.628	0.722	0.861	0.880	
2	0.572	0.678	0.815	0.905	0.913	
5	0.548	0.725	0.879	0.936	0.947	
10	0.552	0.789	0.909	0.957	0.956	
20	0.631	0.775	0.924	0.949	0.951	

As can be seen, for some parameters of RFs, the classification performance can be close to flipping a fair coin (0.5 AUC). On the other hand, SVMs are robust to the choice of penalty parameter C.